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Deconvolution amplifies noise
● Observed galaxy cluster profiles are noisy realizations of projected and PSF-

convolved physical quantities

● The convolution kernel smoothes fluctuations, thus deconvolution has the 
opposite effect



“Traditional” approaches
Parametric form: Only as good as 
what the adopted function can 
reproduce

Direct inversion: Amplifies noise, depends 
on the chosen binning, can lead to 
unphysical solutions  

Eckert et al. 2013



Decomposition on a basis of functions

● Multiscale approach: decompose the observed profile onto a basis of 
functions which can be individually deprojected/deconvolved

● Optimization performed with Hamiltonian Monte Carlo (PyMC3)

ϵ3D(r )=∑ N iΦi(r)
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can be computed once and for all 

Φi→ϕi N i→αi



PSF deconvolution

● To account for PSF smearing we create a PSF mixing matrix using FFT
Annulus Kernel Convolved

We count the fraction of photons being recorded annulus by annulus, and 
repeat the operation for each annulus



PSF convolution: tests
Point source Beta model

Eckert et al. 2020



Integrated quantities

● The code is able to determine accurate luminosities, including core-excised 
ones, even for sources detected with 30 counts

Eckert et al. 2020



Pyproffit: a Python package for 
surface brightness analysis

● The code is distributed in the public Python package pyproffit

https://pyproffit.readthedocs.io

https://pyproffit.readthedocs.io/


Non-parametric log-normal mixture 
deprojection

● We suppose that the function of interest (temperature profile) can be described 
as a linear combination of a large number (P) of log-normal functions

● For a basis of functions {Gi} characterized by predefined means {μi} and standard 
deviations {σi}, the temperature profile can be determined by optimizing the 
normalizations {Ni},

with Tmodel a function of T(r) given above.
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Non-parametric 3D temperature profile 
reconstruction

● Example: A1795

Red: 2D temperature data

Green: 3D model obtained 
with PyMC3

Blue: Best-fit 3D model 
reprojected to compare 
with data



PSF convolution of temperature 
profiles

● In this case the relation between T2D and T3D is the same as before, but with 
a matrix T = PSF · V

w/o PSF w PSF 



Hydrostatic mass reconstruction

● The multiscale density and temperature models can be optimized jointly

ne (r) T3D(r)
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Fitting a mass model

● If we choose to use a parametric mass model:

● The “total” HSE pressure becomes

with r0 the outermost radius of the profile and P0 the pressure at r0

● At any point in the fitting process, multiscale parameters predict ρgas such 
that with the mass model we can predict P(r, θ)

● Priors on the model parameters θ can be easily set in the code

M (<r)=f (r ,θ)

P (r ,θ)=P0+∫r

r0 ρgasG f (r ' ,θ)

r '2
dr '



Posterior parameter distributions

● Example posterior distributions for the Einasto fit



Tests on mock data
● We created mock XMM observations of a fiducial NFW cluster, including 

projection, PSF convolution, energy redistribution etc.

● Our code recovers the true profile with <3% accuracy Eckert et al. 2022a



Example: application to A1795

Eckert et al. 2022a

● Joint XMM + Planck reconstruction of the 3D cluster properties 



Application to A1795

Eckert et al. 2022a

● Derived thermodynamic and mass profiles 



Summary
● We introduce pyproffit and hydromass , two public Python packages to reconstruct galaxy 

cluster properties
● The tools use multiscale decomposition to deproject and deconvolve observed profiles: King 

functions (density) and Gaussian processes (temperature)
● 1D PSF convolution with a mixing matrix is accurate at the sub-percent level

● SX , Tspec and ySZ profiles can be fitted jointly to reconstruct n3D, T3D

● The packages include fast Bayesian optimization using Hamiltonian Monte Carlo
● Within a single common framework hydromass also includes fitting with many popular mass 

models (e.g. NFW, Einasto), parametric forward model, and polytropic reconstruction
● Tests using mock data show that the method is accurate at the <3% level
● Extensive documentation is already in place for pyproffit and will be there soon for 

hydromass. Please try them out and give us feedback!



Work in progress

● Joint fit with weak lensing data
● Add non-thermal pressure modeling 
● Constrain line-of-sight elongation and 3D structure
● Marginalize over the position of the center
● Test reconstruction with mock observations of hydrodynamical 

simulations 



Bonus: AGN spectral parameters

● We recently presented a Bayesian approach to the reconstruction of AGN 
spectral parameters from X-ray survey data

Ge et al. 2022 a,b

ArXiv: 2111.14925 and 2111.15235 



Choice of parameters

● Given a temperature profile with N points measured at radii {ri}, we set 
P=100 Gaussians with means logarithmically spaced between the center 
and the 

● And standard deviations set to the bin size in order to kill fluctuations on a 
scale smaller than the binning 

● The values of {σj} can be tuned to achieve more/less smoothing

logμ j=log r 0+ j( logrmax−log r0)



Implementation on 2D profiles
● First I started by testing how well the model can reproduce the shape of 2D 

profiles

● Optimization performed using PyMC3 (Hamiltonian Monte Carlo)



Now let’s move to 3D
● We set Vi,j the volume of (spherical) shell j projected onto (cylindrical) shell i, then the 2D 

temperature is given by

with wj the spectroscopic-like weights. Here we use Mazzotta et al. (2004) weights,

● It is easy to substitute here another function for the weights and to include the PSF matrix, 
since only the relation between T2D and T3D is changed; otherwise the problem is the same

T 2D(r i)=
∑
j=1

N

V i , jw jT 3D(r j)

∑
j=1

N

V i , jw j

w j=EM 3D(r j)T 3D(r j)
−3/ 4
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