AHEAD2020 WP14 Application of MSVST to X-ray source detection

A. Ruiz A. Georgakakis, T. Akylas, I. Georgantopoulos (IAASARS/NOA) M. Pierre, J.L. Starck, F. Lanusse (CEA-Saclay)

IAASARS

© ESA, IRAP, CNES, XMM-Newton & ACO.

X-ray source detection: beyond 2D

- Exploring how the inclusion of energy/time information can improve source detection.
- We focus on the **time domain**: Improving detection of **transient** sources.
- Algorithm: **MSVST 2D+1D & Bayesian Blocks**
- XMM-Newton **simulations** for testing.

MSVST for X-ray source detection

- MultiScale Variance Stabilization Transform (Stark et al. 2009).
- 2D+1D **denoising** algorithm based on wavelets.
- Two key ideas:
 - **2D + 1D:**
 - Disentangle spacial and time/energy dimensions.
 - Apply IUWT to 2D image, and then 1D IUWT to all wavelet coefficients.
 - Variance stabilization:
 - Transform poisson noise to gaussian noise.
 - Allows to apply "simple" thresholding for denoising.

MSVST for X-ray source detection Light curves using Bayesian Blocks

2D original image + time-filtered detected sources

X-Ray Source Detection in 3D 2D+1D MSVST + Bayesian Blocks

SIXTE simulations

MSVST applied to XMM-Newton simulations SIXTE simulations of a transient source

EPIC-PN 50ks observation; constant background + transient source

MSVST applied to XMM-Newton simulations SIXTE simulations of transient sources

EPIC-PN 50ks observation; constant background + transient source

MSVST applied to XMM-Newton simulations **Denoised images: 2D vs 2D+1D MSVST**

 $max_scalexy = 4$ min scalez = 1 $max_scalez = 5$ $sigma_level = 5$

MSVST applied to XMM-Newton simulations More realistic SIXTE simulations

SIXTE SIMULATON [100 ks 199 sources] EPIC-PN: 100 ks, 0.5-10 keV 199 input sources

40 SIXTE simulations for XMM-Newton observations:

- Replicate geometry of EPIC-PN detector.
- Vignetting effects included.
- Random orientation of the detector.
- Exposure times: 10ks, 25ks, 50ks, 100ks.
- Sources randomly distributed in the FoV.
- Source flux distribution following an scaled logN-logS.
- Astrophysical background + particle background.

Data analyzed using SAS-EMLDetect and our 2D+1D MSVST algorithm.

MSVST applied to XMM-Newton simulations Comparison with SAS-EMLDET

MSVST applied to XMM-Newton simulations Comparison with SAS-EMLDET

Summary & Future Work

- We developed a **functional** 3D source detection algorithm with **performance similar to EMLDET** for constant sources.
- Better understanding and caveats in the time domain:
 - Increase statistics for comparison with EMLDET.
 - Study completeness and spurious rate for transient sources.
 - Effects of a time-variable background.
- Application to real XMM-Newton data: comparison with EXTraS (De Luca et al. 2021).
- Explore the capabilities of 2D+1D MSVST in the energy domain.