AHEAD-2020 WP14 Tasks 14.6 & 14.8

- Blind-Line-Search and ID (14.6)
- Time-Evolving Photoionization (14.8)

F. Nicastro, A. Luminari, E. Piconcelli, L. Zppacosta

Blind Line Search Routine

- Fortran-90 Routine working in either HEASOFT or CIAO environments
- Extremely fast on 30,000 channel spectra (e.g. Athena-XIFU)
- Reads in:
 - RMF/RSP (FITS format)
 - Continuum-Normalized data in sigma (QDP|ASCII: e.g. from XSPEC or Sherpa)
 - Output Filenames prefix
 - (line statistical significance threshold in sigma + verbosity: default σ =4, v=0)
- Extracts LSF, computes LSF FWHM (i.e. spectral resolution)
- Scans the data searching for positive/negative unresolved, quasi-symmetric, line-like features, with integrated significance
 exceeding the threshold
- Reads in atomic-database (currently Verner et al., 2006) and looks for possible line-IDs (WiP)
- Writes out:

Number of Emission Lines:

- File containing list of 'detected' lines' energy, peak-significance, integrated-significance
- File containing possible redshift IDs (WiP)

nicastro@<u>Falcao.</u>local% bls_v2 athena_xifu_1469_onaxis_pitch249um_v20160401.rsp LSF-convolved_Delchi_28_1.5e7.dat 4 0

Response Filename: athena_xifu_1469_onaxi Continuum-Normalized Filename: LSF-convol Output Filename: 4 Line Threshold Significance: 0	ls_pitch249um_v20160401.rsp lved_Delchi_28_1.5e7.dat
Using default Verbosity: O	
Number of Absorption Lines: 18	3

2

BLS Example: "Observation"

Line of Sight Extracted from Cen & Ostriker (2006) Hydro-Dynamical Simulations

Column Density

Redshift

Metallicity

nicastro@Falcao	.local% more	10S_28_WOZ	_WHIM.OUT						
No. of Filamen	t, Last row o	f the Grou	p in Original	File; No of rows in	Group; T(in K	(); NH(in cm-2);	Turbolence (in km	ı∕s); Redshift; log(U); Density (at t
he given z); Me	tallicity (co	mpared to	Solar)						
1	3847	1	1379361.25	3.36197258E+18	261.441772	0.109475948	-1.93419802	1.08900003E-05	9.50078666E-02
2	4908	1	729345.250	3.23784322E+18	190.108902	0.140729979	-1.91785955	1.04900000E-05	0.201572582
3	4915	3	688116.562	3.43952801E+18	184.602371	0.140762627	-1.94454646	1.11622676E-05	0.506648600
4	4919	2	907217.188	3.20123498E+18	212.001709	0.140754178	-1.92046666	1.05629624E-05	0.220032334
5	9167	3	206526.281	3.33116976E+18	101.091904	0.273898929	-1.94133806	1.10789997E-05	1.66198611E-02
6	13305	6	214686.875	1.11909778E+19	103.111465	0.416768640	-2.30846786	3.37445308E-05	2.01087464E-02
7	13919	25	5417012.50	1.18929300E+20	515.280945	0.436983317	-2.99046493	7.81381386E-04	0.115085848
8	15462	1	115829.562	1.46608968E+19	75.7609711	0.495346159	-2.57376432	4.75099987E-05	1.01446602E-02
9	17371	7	451797.094	5.50937954E+18	149.567551	0.569676399	-2.06023479	1.45867716E-05	0.191525415
10	17940	4	143990.109	4.48879305E+18	84.4650497	0.590543449	-2.10365844	1.60944182E-05	1.46267880E-02
11	18372	4	398528.188	4.00824627E+18	140.527100	0.608431876	-2.02583265	1.34562370E-05	2.12974884E-02
12	18414	6	286541.844	1.97825693E+19	119.021568	0.609701395	-1.99990737	1.45019585E-05	0.195985019
13	18419	4	371265.344	1.66751582E+19	135.493530	0.610535920	-2.91440797	1.06934771E-04	0.309740871
14	19595	3	1126450.88	3.17020483E+18	236.260986	0.659921110	-1.91196179	1.03496823E-05	0.154758915
15	21110	5	148218.734	3.50232332E+18	85.6894989	0.724813461	-1.91181695	1.03493585E-05	7.48509616E-02

BLS Example: output

Detected Line-list

# Number of Ab	sorption Lines:	17	
# Number of En	nission Lines:	2	
# E (keV), Sigma	-Peak, Sigma, Sig	gma–Threshold	
# Negative Line	S:		
0.267800003	1.59371269	4.03757238	4.00000000
0.356200010	7.09524679	17.2754307	4.00000000
0.413399994	1.77576268	4.03026819	4.00000000
0.454200000	10.0198488	24.6709194	4.00000000
0.503000021	8.24497032	20.4788818	4.00000000
0.564999998	2.81150985	7.20422220	4.00000000
0.573800027	15.4453526	39.6384010	4.00000000
0.606999993	3.29755354	8.53451443	4.00000000
0.623799980	1.95347917	4.41314697	4.00000000
0.640600026	5.42002916	7.90693521	4.00000000
0.641399980	5.75636578	14.7684107	4.00000000
0.710600019	7.27873373	18.1650715	4.00000000
0.711399972	6.76571894	9.38497066	4.00000000
0.783399999	1.63223302	4.25715160	4.00000000
0.940599978	6.63401318	17.7794666	4.00000000
1.29740000	5.49634790	15.2450886	4.00000000
1.71099997	1.81207728	4.86538553	4.00000000
# Positive Lines	:		
0.470999986	1.57258713	4.53434849	4.00000000
0.685000002	1.54889691	4.23500299	4.00000000

Tentative Redshift IDs

Possible Redshift: z =	= 0.611312	509			
====================================	======================================	0.573	949516 · lon·	07	
2 : Eobs = 0.4	13399994	; E0 =	0.666116595	; lon: 07	
3 : Eobs = 0.5	73800027	; E0 =	0.924571157	; Ion: Ne9	
4 : Eobs = 0.6	23799980	; E0 =	1.00513673	; Ion: Fe21	
Possible Redshift: z :	= 0.388363	600			
1: Eobs = 0.413399	994 ; E0 =	0.573	949516 ; lon:	07	
2: Eobs = 0.5	03000021	; E0 =	0.698346913	; Ion: O7	
3: Eobs = 0.6	23799980	; E0 =	0.866061211	; Ion: Fe18	
6: Eobs = 0.6	41399980	; E0 =	0.890496373	; Ion: Fe18	
Possible Redshift: z :	= 0.263649	344			
1: Eobs = 0.454200	000 ; E0 =	0.573	949516 ; lon:	07	
2: Eobs = 0.5	64999998	; E0 =	0.713961899	; Ion: 07	
3 : Eobs = 0.7	10600019	; E0 =	0.897949219	; Ion: Fe17	
4 : EODS = 0.7		; EU =	0.898960114	; ION: Fe17	<u> </u>
Possible Redshift: 7 :	= 0.141052	723			1
	=======				
1: Eobs = 0.503000)21 ; E0 =	0.573	949516 ; lon:	07	
2: Eobs = 0.5	73800027	; E0 =	0.654736102	; Ion: 08	
4:EODS = 0.0 5:Fobs = 0.7	83399990	; EO =	0.711788654	; Ion: 07	
6: Eobs = 0.9	40599978	; E0 =	1.07327414	; Ion: Ne9	
Possible Redshift: z :	= 1.583981	.51E-02			
1: Eobs = 0.564999	998 : E0 =	0.573	949516 ; Ion:	07	
2 : Eobs = 0.6	40600026	; E0 =	0.650747001	; Ion: O8	
4 : Eobs = 0.6	41399980	; E0 =	0.651559651	; Ion: 08	
6: Eobs = 0.7	10600019	; E0 =	0.721855819	; lon: 07	
7 : EODS = 0.7		; E0 =	0.722668409	; Ion: 07	
Possible Redshift: z :	= 2.604722	98E-04			
1: Eobs = 0.573800)27 ; E0 =	0.573	949516 ; lon:	07	
2:EODS = 0.7 3:Eobs = 0.7	10600019	; E0 =	0.710785091	; Ion: 07	
		, LO –			
Possible Pedshift: 7	5 ///80	0265-07)		
		020E-07	-		
1: $Eobs = 0.6069999$	993 ; E0 =	0.573	949516 ; lon:	07	
2 : Eobs = 0.9	40599978	; E0 =	0.889385343	; lon: Fe18	
Possible Redshift: z :	= -7.99141	526E-02	2		
1: Fobs - 0.622700		0 5 7 2	040516 · lon:	07	
2: Eobs = 0.023799	10600019	: E0 =	0.653813004	: lon: 08	
1 - Eobs - 0.7	11200072	, 50	0.0535015000	, 1	

6 : Eobs = 0.783399999 ; E0 = 0.720795274 ; Ion: O7 7 : Eobs = 0.940599978 ; E0 = 0.865432739 ; Ion: Fe18

BLS Example: Line and Redshit IDs

z=0.141

0.4

0.5

0.6

Energy (in keV)

z=0.611

0.8

0.9 1

0.7

-15

-20 ⊾ 0.3

Possible Redshift: z = 0.611312	509		
1: Eobs = 0.356200010 ; E0 =	0.5739	949516 ; lon:	07
2 : Eobs = 0.413399994	; E0 =	0.666116595	; lon: 07
3 : Eobs = 0.573800027	; E0 =	0.924571157	; Ion: Ne9
4 : Eobs = 0.623799980	; E0 =	1.00513673	; lon: Fe21

Possible Redshift: z = 0.141052723
=======================================
1: Eobs = 0.503000021 ; E0 = 0.573949516 ; Ion: O7
2 : Eobs = 0.573800027 ; E0 = 0.654736102 ; Ion: O8
4 : Eobs = 0.623799980 ; E0 = 0.711788654 ; Ion: O7
5 : Eobs = 0.783399999 ; E0 = 0.893900692 ; Ion: Fe17
6 : Eobs = 0.940599978 ; E0 = 1.07327414 ; Ion: Ne9

BLS: TO dO (depending on funding, personnel, etc.)

- Update/Integrate (forbidden/intercombination, innershell resonant ground-state and metastable transitions) Atomic Database
- Improve Line/Redshift ID routine: needs to be smarter (AI training might help): e.g. starting from strongest and looking for right strength ratios (including saturation)
- Python interface to directly call BLS from within Sherpa | XSPEC
- GUI interface to locally iterate the procedure and plot results

14.8: Time-Evolving Photo-Ionization Device (TEPID: Luminari+22)

- Solves the system of 1st-order differential equations of time-evolving ionization balances following ionizing intensity variations with time
- Uses adaptive time-resolution algorithm to speed-up calculation
- Currently considers only photo-ionization and radiative recombinations and approximates on heating-cooling balance
- Includes radiative-transfer
- Applies to all variable ionizing sources: e.g. transients (GRBs) and AGNs
- Interfaces with Phase (Krongold+03), in XSPEC|Sherpa to produce mock spectra and fit data

$$\frac{dn_{Xi}}{dt} = -[F_{Xi} + \alpha_{\rm rec}(X^{i-1}, T_e)n_e]n_{Xi} + F_{Xi-1}n_{Xi-1} + \alpha_{\rm rec}(X^i, T_e)n_e n_{Xi+1}.$$
 (4)

$$t_{eq} \approx \left\{ (\alpha_{rr}(X^i, T_e)n_e) \cdot \left(\frac{\alpha_{rr}(X^{i-1}, T_e)}{\alpha_{rr}(X^i, T_e)} + \frac{n_{X^{i+1}}}{n_{X^i}} \right) \right\}^{-1}$$

TEPID: Adaptive-Resolution Algorithm

Up-and-Down case

TEPID: GRB-case: Stratified-Ionization

TEPID: GRB-case: Spectra vs Local Density

TEPID: AGN-case: Ionization Balance vs Time

Fig. 9: AGN lightcurve

TEPID: AGN-case: Time-Resolved Spectra

TEPID: To do

- Include time-evolving population-level calculation and metastable transitions (to further constrain density)
- Include proper heating/cooling calculation
- Include additional ionization/recombination mechanisms (i.e. transition rates)
- Improve atomic-database
- Include proper pre-burst star-forming region ionization conditions based on simulations (Luminari, Graziani, in prep.)