

Task 14.4: Machine Learning techniques for microcalorimeter data reduction

Jesús Vega-Ferrero, Maite Ceballos, Bea Cobo, Francisco Carrera (IFCA, Santander) Pere García, Josep Puyol-Gruart (IIIA, Barcelona)

Publications of the Astronomical Society of the Pacific, 00:000000 (16pp), 2022 Month © 2022. The Astronomical Society of the Pacific. All rights reserved.

Event Detection and Reconstruction Using Neural Networks in TES Devices: a Case Study for Athena/X-IFU

J. Vega-Ferrero^{1,2}, M. T. Ceballos¹, B. Cobo¹, F. J. Carrera¹, P. García², and J. Puyol-Gruart² ¹ IFCA, Instituto de Física de Cantabria (CSIC-UC), Av. de Los Castros s/n, E-39005 Santander, Spain; astrovega@gmail.com ² Artificial Intelligence Research Institute (IIIA), Campus UAB, E-08193 Bellaterra, Spain Received 2021 October 11; accepted 2022 February 2; published 2022 MM DD

unded bu the Horizon 2020 Framework Proor

Accepted

by PASP!

AHEAD 2020

Integrated Activities for the High Energy Astrophysics Domain

The context

FU On board processing

Framework Program of the European Union Grant Agreement No. 871158

DETECTION + RECONSTRUCION

Count Rate 20 10 _ 0 -0

The problem

AHEAD 2020

How to improve detection?

How many pulses? Where are they? Pulses energy?

Funded by the Horizon 2020 Framework Program of the European Unior Grant Agreement No. 871158

- ? Can we use ML techniques to detect + reconstruct the pulses?
- Do they improve the ? detection limit?
- ? At which computational cost?

AHEAD 2020

Integrated Activities for the High Energy Astrophysics Domain

The analysis

XIFUSIM simulations of X-IFU events

Funded by the Horizon 2020 Framework Program of the European Union Grant Agreement No. 871158

Neural Networks architectures

$CNN(\bullet)$ versus DNN(x)

(best 10trials/50 epochs shown)

PULSE CLASIFICATION

Funded by the Horizon 2020 Framework Program of the European Union Grant Agreement No. 871158

$$Precision = \frac{TP}{TP + FP}$$
Contamination? $recall = \frac{TP}{TP + FN}$ Completeness? $F1=2\cdot \frac{precision \cdot recall}{precision + recall}$ Weighted average
of precision and
recall

TP: True-positive: Single identified as Single **FP**: False-positive: Double identified as Single **FN:** False Negative: Single identified as Double

PULSE CLASIFICATION

(best MAE 10 trials after 100 epochs shown)

PULSE SEPARATION

Framework Program of the European Union Grant Agreement No. 871158

PULSE ENERGY

PULSE ENERGY

The conclusions

AHEAD 2020

DNN architecture

Model	Metric	# Ops.	п	l_r	b
bin-best	0.9928	1.9×10^4	4	0.001	250
bin-ops	0.9901	2.2×10^{3}	2	0.001	150
time-best	0.62	7.0×10^{2}	4	0.001	300
time-ops	0.72	$1.5 imes 10^4$	4	0.001	150
enrg-best	3.3	$3.3 imes 10^4$	3	0.0001	150
enrg-ops	4.6	2.6×10^3	2	0.001	200

CONCLUSIONS

Funded by the Horizon 2020 Framework Program of the European Union Grant Agreement No. 871158

CLASSIFICATION

- Computational cost: +2200 ops/pulse
- S misclassified: 0.04%
- D missclassified: 1%
- ✓ Completeness of S ≈ 1.0
- ✓ Purity of **S** ≈ 0.99
- Fails for extreme cases of D records
- · IMPROVES classical methods!

DNN architecture

Model	Metric	# Ops.	п	l_r	b
bin-best	0.9928	1.9×10^4	4	0.001	250
bin-ops	0.9901	$2.2 imes 10^3$	2	0.001	150
time-best	0.62	$7.0 imes 10^4$	4	0.001	300
time-ops	0.72	$1.5 imes 10^4$	4	0.001	150
enrg-best	3.3	3.3×10^{4}	3	0.0001	150
enrg-ops	4.6	2.6×10^3	2	0.001	200

Funded by the Horizon 2020 Framework Program of the European Union Grant Agreement No. 871158

SEPARATION

Computational cost: +15000 ops/pulse Sub-sample estimation of separations IMPROVES classical methods!

 L_i (32, 32, 64, 32) (8, 8) (64. 128. 128. 16) (32, 64, 16, 4) (32, 128, 64) (8, 32)

DNN architecture

Model	Metric	# Ops.	п	l_r	b
bin-best	0.9928	1.9×10^4	4	0.001	250
bin-ops	0.9901	2.2×10^3	2	0.001	150
time-best	0.62	$7.0 imes 10^4$	4	0.001	300
time-ops	0.72	$1.5 imes 10^4$	4	0.001	150
enrg-best	3.3	3.3×10^4	3	0.0001	150
enrg-ops	4.6	2.6×10^3	2	0.001	200

DNN not viable alternative for energy determination BUT helpful for pulse classification (avoid contamination) IF computational cost affordable

CONCLUSIONS

Funded by the Horizon 2020 Framework Program of the European Union Grant Agreement No. 871158

L_i (32, 32, 64, 32)(8, 8)(64, 128, 128, 16)(32, 64, 16, 4)(32, 128, 64)(8, 32)

ENERGY

Computational cost: +2600 ops/pulse OPT FILTERING ~ 50000 ops/pulse Sub-sample estimation of separations **Worse** FWHM ~ 9 eV @ 5-7 keV <u>Increasing the pulse length (>0.82ms)?</u>

MORE INFO

Publications of the Astronomical Society of the Pacific, 00:000000 (16pp), 2022 Month © 2022. The Astronomical Society of the Pacific. All rights reserved.

Event Detection and Reconstruction Using Neural Networks in TES Devices: a Case Study for Athena/X-IFU

J. Vega-Ferrero^{1,2}, M. T. Ceballos¹, B. Cobo¹, F. J. Carrera¹, P. García², and J. Puyol-Gruart² ¹ IFCA, Instituto de Física de Cantabria (CSIC-UC), Av. de Los Castros s/n, <u>E-39005</u> Santander, Spain; <u>astrovega@gmail.com</u> ² Artificial Intelligence Research Institute (IIIA), Campus UAB, <u>E-08193</u> Bellaterra, Spain Received 2021 October 11; accepted 2022 February 2; published 2022 MM DD

AHEAD 2020

of the European Union Grant Agreement No. 871158

Soon in PASP!

